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Abstract

An attempt to reconcile quantum mechanics with Newton’s laws represented by the
non-Lipschitz  formalism has been made. As a proof-of-concept, a line of equally
spaced atoms was studied, It appeared that enforcement of atom incompressibility
required relaxation of the Lipschitz condition at the points of contact. This, in turn,
leads to fractional powers and discreteness of values of the basic parameters
including energy and action, and finally, to the uncertainty relationship between
positions and velocities. In addition to that, the relaxation of the Lipschitz condition
caused instability of velocity with respect to small changes of the atom position, and
that introduced element of randomness in the system behavior. It was shown that
the only model for the probability evolution which incorporates all the new
properties of the motion, is the Schrodinger  equation. This means that quantum
mechanics can be derived from the Newton’s laws if an unnecessary mathematical
restriction — the Lipschitz  condition — is removed from the mathematical
formalism.

1. Introduction

The governing equations of classical dynamics can be derived from Lagrange

equations, from variational principles, or directly from Newton’s laws of motion, and they

may be presented in various equivalent forms. However, there is one mathematical

restriction on all such forms: the differential equations describing a dynamical system

ii = I)i(xl, xj,..., X“n ) i=l,2,..., n (1)

must satisfy the Lipschitz condition, which expresses that all the derivatives

(2)

must be bounded. This mathematical restriction guarantees the uniqueness of the solution

to (1), subject to fixed initial conditions,

mathematical treatment. However, there

and that makes it the most attractive for a

is a certain price to be paid for such a
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mathematical convenience since in many cases the condition (2) is not compatible with the

physical nature of motions. A detailed analysis of such cases for dissipative systems (with

application to irreversibility in thermodynamics and to theory of turbulence) was presented

in our earlier publications, [1-4].

In this paper we will discuss only non-dissipative

emphasis to motions in the domain of an atomic scale.

2. The t)roblem formulation

(Hamiltonian)  systems with the

In order to trivalize our analysis, we will start with a line of equally spaced identical
atoms of the mass m and the radius rO. The two-atom potential will be presented in the.
simplest form:

V+ ’(t-x)’
(3)

where x is the distance between the atoms along the center line, and f is the distance

between the atom centers when they do not interact, Fig. 1.

The requirement of incompressibility of the atoms leads to the conditions:

X=t)+o atx+o

and

Then, as follows from the energy conservation

(4)

(5)

E=$ + v = Const
(6)
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and the condition (4):

V(0) = ;V2?2 = E (7)

where E is the total energy.

The only way to reconcile the conditions (5) and (7) is to introduce an additional

term in (3)

where r is a constant of the order of the radius of the atom, and a is a dimensionless

positive constant:

O<a<l (9)

Indeed, then:

Obviously the condition (9) violates the Lipschitz  condition for dtilcii  at -i+ O in (10).

Now the potential (3) takes the form:

V = E ( l – y i 2 - is ), y=+

The additional term d~/cLi in the expression for the force:

~=dv—.-(2p+ti”-’)
&

(11)

(12)



&

b

dominates over the other terms when x +0, but it rapidly vanishes when x -/! . In other

words, the term (8) in the expression for the potential (10) reconciles the conditions (5) and

(6) without changing the motion in the “classical” domain x -1; but as will be shown

below, it brings fundamental changes into motions on the atomic scale x -r.

Before deriving the equation of motion, we have to discuss in more details the

structure of the constant cx . Since the two-atoms potential must be a symmetric function

of the atom coordinates, it can be described only by an even function:

v(x) = V(-x), (13)

and this requires

demonimator:

that ~ must be a fraction with an even numerator and an odd

~ - z~l
2)1+1

,m, n=l,2...
(14)

It will be shown later that actually m in (14) must be an odd number. But now we will

proceed with the equation of motion which immediately follows from the energy

conservation (6):

Obviously that on the atomic scale, i.e., within the domain where

Eq. (15) can be simplified since

2
fi2 =:22 <<f”

(15)

(16)

(17)



Introducing a dimensionless velocity

rrrl
F=v —

2E (18)

one finally arrives at a very simple governing equation within a small region around ~ = O:

a

-5;=-F~ , 0<.i-l (19)

Before proceeding with the analysis of Eq. (19), one has to note that as follows from Eq.

(4),

Sign G = Sign i at x + O, (20)

i.e., ; must be an odd function of ~. This condition  can be enforced by requiring that m

in Eq. (14) is an odd number, and therefore, the final form of ( 14) is:

~_ 2(2rrl-4;  }, ~1=1 z
“” “etc.  nl 5 n

4/2+1 ‘ ‘ ‘

Introducing, for convenience, another constant:

p=;==., n,rn = 1,2... etc. rn < rl

we rewrite Eq. (19) in the most simple form:

;=*~~, O<i-1

(21)

(22)

(23)

5



Two signs of the velocity in Eqs. (15), (19), and (23) corresponds to motions in opposite

directions starting from the same position.

Now we can verify the boundedness  of the fundamental invariants of motion

when ~ + O.

The impulse of the force F:

=
{-

–2r  ~IP-+O ati+O

vanishes with ~ despite the unfoundedness of the force F itself.

The action

s =j(E–2v)df  = –4(1-2ia):  =
o 0

= –r~[@ (1-/? ).i’-2( l+ll)i)+D]D+  0+0 at i +0
2

(24)

(25)

also vanishes with -i.

Finally, one can find the period during which the motion approaches the point ~ = O:



rr 2m= -#1-@i’-~  +0 a[ i-+o
(26)

3. Quants  of ener~v and uncertainty relationship.

Let us turn to Eqs. (1 8), (21) and (23) and express the kinetic energy of the motion

Was a function of n and m:

2(2nl-1)— .

W = E,i 4“’L ; n,m =1,2,... ctc,  m <n (27)

As follows from (27), the energy W can take only discrete values and change by

finite steps, or quants, since n and m are natural numbers.

found from the condition

m = 1, n + 00,

vanishes since

“  ‘w=wn-wn-]=E[’&-+o

The smallest quant of energy

(28)

(29)

However, if one introduces action Sn for each value of energy Wn:

1
S.=: W.,  v = Const, [v]= — sn=~wn, v = Consf, [ v ] = :

sec }, .
(30)
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then

[-

—-—.“1min AS = ~lirn rti4;+1 – (n – l)i4;-3  = ~ =h= 2xhv n+. v
(31)

Thus, we have arrived at a new universal constant h which represents the minimum quant
of action Sn, and is to be considered as a fundamental characteristic of any system on the

atomic scale.

In order to relate quants  of action to quants  of energy, another fundamental

characteristic, the frequency v had to be introduced.

Since we are trying to avoid making use of any preliminary knowledge about

quantum mechanics, and instead, are deriving quantum mechanics from the Newton laws,

we will not discuss here the physical consequences of the existence of h, v, and n,, but

rather restrict ourself by a comment that these constants can be identified with the Planck

constant, frequency of electromagnetic waves, and quantum number, respectively.

Let us turn again to Eq. (27) and rewrite it in the following form:

Then the quants of energy and action are, respectively:

AW = EA(iPfi)

and
AS=~vEA(i%)

whence

(32)

(33)

(34)

(35)



and therefore,

( )
A#~ >% (36)

In other words accuracy to which the dimensionless product Ijfi can be defined, in

principle, cannot exceed the constant vh/E. Qualitatively (36) is similar to the

Heisenberg’s  uncertainty principle [3], however, quantitatively it looks different, and the

reason for that is the following: in the Heisenberg  formulation, the position and the

velocity are considered as random variables’ and their uncertainties are presented in the form

of standard deviations; on the contrary, in our analysis the position and the velocity are

discrete, but still deterministic variables, and their uncertainties do not have yet any

probabilistic structure. It is also interesting tc) note that the inequality (36) is not symmetric

with respect to X and V since ~ is under the square root. This asymmetry will be

discussed later in connection with instability of velocities with respect to changes in

positions.

Let us briefly summarize the results of this section: It has been demonstrated that

enforcement of incompressibility of atoms leads to non-Lipschitz potential (11) which, in

turn, creates a discreteness of possible values of kinetic energy and action. It was shown

that the smallest quant  of action is non-zero, and it can be identified with the Planck

constant, while two additional invariants, v and n suggest that the motion on the atomic

scale acquires some wave-like properties. Finally, the uncertainty rellllationship  between

the position and velocity similar to those postulated by Heisenberg,  was derived.

4. Ouantum Domain

Let us turn now to a detailed analysis of Eq. (23) plotted in Fig. 2. The most
remarkable property of the function (23) is the existence of a point 10 # O which cuts the

curve into two qualitatively different parts: for i > ZO the curve has a smooth “classical”

form; but for X < iO the smoothness is lost, the velocity gradient grows sharply becoming

unbounded at i + O.

The dividing point can be found from the condition that the curvature at iO has its

maximum:



whence

[1~o= ~2(1-2/?) *
O<p<;

2-/? ‘

(37)

(38)

It should be emphasized that the existence of the dividing point iO # O is a consequence of

the relaxation of the Lipschitz  condition: indeed,

~o=()

for the classical case when ~ = ~, i.e., n + CO.

(39)

L

It is easily verifiable that the function (38) has

~oo = rnjax ~0 =0.017

a maximum

(40)

a t  ~=:0.3441  , i.e., at n =rn = 2, and it vanishesat~  = Oand/?  = ~. (41)

One should recall that the basic arguments in Eq. (38) is n and m rather than ~, and

therefore, the separating point iO can take only discrete values.

The main property of the region

(42)
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is that the velocity gradients

a=~~~-’+m at ~+0
d

(43)

in there are extremely large becoming unbounded at i = O.

In our further discussions we will call this region a quantum domain,

5. E~uations  of motions in auantum dom~.

Let us turn again to Eq. (23) and find the equation of motion subject to the initial

conditions

(44)

when the motion starts within the quantum domain and directed toward its origin i = O.

Then taking the sign minus in Eq. (23)

&.
—=-dfp

one easily finds:

(1 -p)(ip -i’-~)= i

i.e.,

(45)

(46)

(47)
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The period during which the motion approaches the reflection point i =() follows from

Eq. (46) and it coincides with the value (26) found earlier.

However, we have some problems with the reflected motion which is obtained

from Eq. (23) with the sign plus:

fib[)~.+ ——
1-P

(48)

1
First of all, Eq. (48) is equipped with two signs since the fraction —

4tl + 1

l–p=2(n+l)

has an even demoninator.  Clearly the positive (negative) sign corresponds to the reflection

of the right (left) atom frQm the left (right) one.

Secondly, the motion (48) is fundamentally irreversible:

(48)

i(–t) = ii (t), i = H

This means that the backward motion does not exist at all.

Thirdly, Eqs. (47) and (48) represent a regular solution

there also exists a singular solution:

indeed, as follows from

(49)

to Eq. (23). However,

(50)

which can be verified by the direct substitution of (40) into Eq. (23). (Obviously the

coexistence of three different solutions to the same differential equation subject to the same

initial conditions is caused by the relaxation of the Lipschitz condition at i = O).

We will now show that the singular solution (40) possesses a very remarkable

property: it is extremely stable with respect to changes in incoming (negative) velocities,

and extremely unstable with respect to changes to outcoming (positive) velocities. In order

to demonstrate that, linearize the governing equation (23) with respect to a point i, >0:
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:+ai+(l(ik),  (Z=/?.if-l>O, k=2,3,... (51)

Then
i= Ee”i, &<<l (52)

In linear approximation, the constant a characterizes the rate of stability (a<O) or instability

(a>O), and here

Ial + 00 as i. + O

Therefore, the solution (50) changes its stability

(53)

to instability at the moment of reflection

when the sign in Eq. (23) switches from minus to plus.

It can be easily verified that the motions described by the regular solutions (47) and

(48) are neutrally stable with respect to uncertainties in position i since

(54)

Indeed, as follows from (54), a small error in the coordinate i decreases (in case (47) or

increases (in case (48)) with the rate of ~P’l--P which is slower than an exponential rate,

and that makes the solutions (47) and (48) Lyapunov neutrally stable.

However, the velocities of the same motions are extremely sensitive to the errors in

~. Indeed

and therefore,

(55)

(56)
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Eq. (56) has a remarkable property:

(57)

In other words, infinitesimal errors in positions cause unbounded errors in velocities.

Such an instability is much stronger than the Lyapunov instability: it has the same power

as the Hadamard  instability which can oc~ur in partial differential equations [3]. In our

case, the instability is caused by the violation of the Lipschitz condition, and we will call it

non-Lipschitz instability.

At this point, we can justify the term “extremely unstable” applied in connection

with Eq. (51): actually it means non-Lipschitz  unstable, i.e., unstable in a sense of Eq.

(57).

One can verify that small errors in velocities cause small errors in

positions and velocities are not equal with respect to the relationships

uncertainties.

position, i.e.,

between their

Let us now summarize the results of this section. If the motion starts within the

quantum domain and directed toward the point of collision ~ = O, it is described by the

regular solution to Eq. (23) given by Eq. (47). When the motion approaches i = O, it

switches to the singular solution (50) which is non-Lipschitz  stable with respect to

incoming velocity disturbances, and this switch is irreversible. But since the same

singular solution is non-Lipschitz unstable with respect to outcorning  velocity disturbances,

the motion switches to the reflection branch of the regular solution (48), and this switch is

a l s o  i r r e v e r s i b l e .

Thus, two branches, (47) and (48), of the regular solution are separated by the

singular solution (50), and that causes the fundamental irreversibility of the motion (see Eq.

(49)).

It should be emphasized that this irreversibility does not cause any loss of energy,

and that is guaranteed by Eq. (6). We will stress again that both motions (47) and (48) are
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neutrally stable, but their velocities are non-1.ipschitz  unstable with respect to

in positions, and this asymmetry affects the uncertainty relationship (36).

6. Emergence of randomness

Almost at the very beginning we have noticed some abnormalities in

between the position ~ and the corresponding velocity 6: it started with 13q.

small errors

relationship

(23) which

generates unbounded velocity gradients at .i -+ O, and led to dynamical instability of the

velocities (55). In section 4 we have defined the quantum domain:

O<isio (58)

(where 10 is given by Eq. (38)), within which the Vekity gradient is extremely  high (it

becomes unbounded at 1 -+ O ). Hence, for a given -i from (58), the corresponding
velocity can take any values from t(20  ) to fi(0) = O, i.e., it actually becomes random.

It should be emphasized that the randomness is qualitatively different from the uncertainty

defined by Eq. (36): the former is triggered by the instability, while the latter is emerged

from the discreteness of the energy (although both of these phenomena represent non-

Lipschitz effects).

Since we are dealing with a

(6) represents the Hamiltonian H),

Hamiltonian  system (indeed, the total energy E in Eq.

there are two possible scenarios for the evolution of

randomness. The classical scenario is presented by the Liouville-Gibbs  equation:

~+{f,H}=O (59)

where f is the joint probability density as a function of generalized positions q, momenta
pi, and time t, and { } is the Poisson’s brackets:

(60)

The quantum scenario is described by the Schrodinger  equation:
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(61)

where v is a complex wave function representing a probability amplitude depending on

coordinates q, and time t, and H is the Hamiltonian  operator.

The choice between these two models of the probability evolution should be based upon

their compatibility with two constraints which have been derived in Section 3: existence of

discrete levels of energies (27), and the uncertainty relationship (36).

Let us start with the Schrodinger  equation (61). Firstly, as shown by Heisenberg

[5], the uncertainty principle

@ ax 2: (62)

(which is a statistical version of Eq. (36)) directly follows from Eq. (61). Secondly, the

operator H in Eq. (52) has a discrete spectrum of real eigenvalues,  and that perfectly fits

into the discrete spectrum of energies (27).

On the

disqualified on

and (36).

other hand, the first scenario expressed by Eq. (59) can be immediately

the basis that it does not have a mechanism to preserve the constraints (27)

Thus the ony model which describes the structure of microworld and uniquely

follows from the Newton laws is the Schrodinger  equation. In this context, the equations

of motion (47) and (48) following from the governing equation (23) describe a

deterministic (but unstable) microstructure behind the corresponding Schrodinger equation

in the same way in which the dynamical equations of a random walk describe those of the

Fokker-Planck equation, [2,4].

7. Discussion and conclusion

During more than six decades, quantum mechanics enjoyed an unprecedented

success which overshadowed some conceptual concerns that it is based upon postulated

laws which are not only underivable  from the Newton’s laws, but are fundamentally
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different from the latter. At the same time, there always was a strong belief that the

mathematical foundation of Newtonian dynamics is perfect and unshakable. We first

started having doubts regarding the issue of the perfection and completeness of this

formalism when we tried to describe the effect of the snap of a whip; it appears that if the

Lipschitz condition at the free end is preserved, one arrives at a unique, smooth, stable, but

useless solution which does not describe any snap; however, if the Lipschitz condition is

relaxed, then an additional, singular solution represents a strong cumulative effect which

simulates the snap [1]. This example suggested that there are some physical phenomena

which are incompatible with the Lipschitz condition, Since then, in several works [2]-

[4]we have demonstrated that the removal of physically unjustifiable Lipschitz conditions in

dissipative systems leads to fundamentally new phenomena such as terminal attractors and

repellers, dynamical simulators of the Fokker-Planck  equation, etc. The non-Lipschitz

formalism helped to shed a new light into the irreversibility in thermodynamics and the

origin of turbulence [2]. It was shown, that the new mathematical formalism of Newtonian

dynamics remained to be fully compatible with Newton’s laws, and, at the same time, it

preserved all the previous results of the classical (Lipschitz) version.

Actually the usefulness of the non-Lipschitz  approach to dissipative dynamical

systems gave a motivation for application of the same approach to conservative

(Hamiltonian)  systems, and in particular, for an attempt to reconcile quantum mechanics

with the Newton’s laws represented by the non-Lipschitz  formalism. For a proof-of-

concept, we have selected a motion of a line of equally spaced identical atoms. We noticed

a little inconsistency in conventional treatment of such a system: the atom incompressibility

has never been incorporated into the mathematical formalism. It appears that the

enforcement of the incompressibility of atoms required relaxation of the Lipschitz condition

at th~ points of contact. This, in turn, led to fractional powers and discreteness of values of

the basic variables, including energy and action, and finally, to the famous uncertainty

principle. In addition to that, the violation of the Lipschitz  condition caused instability of

velocity with respect to small changes of position, and that introduced an element of

randomness in the system behavior. It was shown that the only model for the probability

evolution which incorporates all the new properties of the motion, is the Schrodinger

equation, while the governing equation (23) of this motion represents a deterministic (but

unstable) microstructure behind the corresponding Schrodinger  equation.

Considering Eq. (23) as a hidden variables model, we will discuss the Bell theorem

which states that local hidden variables are not compatible with quantum mechanics [6].
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So, is the model (23) local? We will show that it is not. But first of all, one should recall

that some models of classical dynamics, and in particular, those which include geometrical

or kinematical (non-holonomic)  constraints, are also non-local. Indeed, in an

incompressible fluid, pressure is found not from a constitutive  equation, but rather from a

geometrical constraint di v v = O as a Lagrange multiplier, and therefore, it depends upon

the global distribution of the velocity v over the whole volume. Similar effect takes place

in a two-dimensional version of the model discussed above. Indeed, by extending Eq. (4)

to the following:

X=vn-+’o, y=v,  +o (-x x,y-+o (63)

i.e., by requiring a no-slip condition at the point of contact between two atoms, one must

introduce a spin with an angular velocity co to enforce Eq. (63):

~=–>at x=() (64)
I-.

From the dynamical viewpoint, the no-slip condition (63) means that the atoms are
represented by rough spheres, and therefore, the “friction” force F~ which is proportional

to the normal force F in Eq. (12), must be unbounded at x=O.

F,+~ufx-+o,

But for a rotating sphere

dim da.) _p
Ff=$rnrOti  =$rnrO-vn= —

(ix (ii x

(65)

(66)

Hence, the Ixhavior of @ in a small neighborhood of the point-of-contact x = O is

characterized by the condition:

(67)

In order to reconcile Eqs. (64) and (67), one can utilize a non-Lipschitz  term

similar to those in Eq. (8):
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2m–1~=–~ (1-tanh~7j,  Y=m<l-p
ro

(68)

where y is selected as a fraction whose value is the closest to the fraction (1-~)

Eq, (68) represents a kinematical constraint which vanishes for i 200 while satisfying

both the conditions (64) and (67). This constraint introduces a non-locality in description

of motion since the value of the spin is fou~d not from the corresponding (local) dynamical

equation

]Zh = M
(69)

where Iz is the moment of inertia,

but rather from the global kinematical constraint (68), while the moment M in Eq. (69)

plays the role of the reaction of this constraint.

Since Eq. (68) has the same structure as Eq. (23), the angular velocity co can take

only discrete values

Strictly speaking. Eq. (23) can be rewritten in the form similar to (68)if there is no

potential field, i.e., V=O:

since tanh isi for small i, but

i.e., the contact effect gradually vanishes,

The analog between Eqs. (68) and (70) can be carried on further if one considers

Eq. (70) as a constraint which requires that the velocity must gradually vanish as x -+ O.

Indeed, then the non-Lipschitz  force introduced in Eq. (12) will appear as a reaction of this

constraint, and that in turn will introduce the corresponding non-Lipschitz  potential (8).



Now we can combine these two types of constraints in the following one: the relative

velocity between two particles must gradually vanish as they approach the point of contact.

If, for instance, these pticles are represented by two identical rough spheres, the

combined (non-slip) constraint can be formulated as:

(fI ‘Fj)O(i,+Vj)-tanh  ‘~=o (70)

(FI ‘Fj)x(ii+ij)-tanh  ‘J=o (71)

where ?, is the dimensionless velocity at the point of contact, F,j is the dimensionless

shortest distance between the particle surfaces, and ii is the dimensionless radius-vector of

the center of the ith particle, while ~ and y are expressed by Eqs. (22) and (68),

respectively <

Now we are ready to consider a general case of
represented by incompressible rough spheres of radii a,

The kinetic energy of such a system is:

N

(W  =~~ rn,ri . ri+~fniafcoi  ● co,
1–1 )

where rl (X,,y, > ‘, ) is the radius-vector of the

N interacting particles which are
and masses m,.

(72)

center of iti particle,  and

COi(pi, w,, f3i, @i, V,, bi ) is the vector of the angular velocity (spin) of ith particle.

The potential energy of the system for the case of the simplest gravitational

attraction i s:

V=_~$~G(l_dij)~_
l-l J-1 r, – rj

(73)

where G is the gravitational constant, and ~ij is the Kronecker delta,
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However, the generalized coordinates r,pi, ~i, and Oi in Eqs. (72) and (73) are

not independent: they are supposed to provide no-slip contacts between the particles, and

therefore, they should satisfy the constraints (70), (71 ).

We will rewrite these constraints in a more general form since they were formulated

for only two interacting particles with no potential field.

Firstly, in the presence of a potential field (V # O), the effect of the constraint

must be localized within a small neighborhood of the point of contact since on a distance

the corresponding non-Lipschitz  potential sharply decreases and it can be ignored in

comparison to the potential V (see Eqs. (11 ) and (17)).

Secondly, if a particle can have contacts with several different particles, the

constraint imposed by the closest particle must dominate over the others.

Both of these conditions can be implemented by introducing special compatibility

parameters p and v into Eqs. (70) and (71).

Pf’)~  ‘ij[(Fi  ‘Fj)O(~i  ‘vj)-tanh  F]]=O
j=l

ivti[(’i-’j)x(fi +ij)-mnh’~]=o
j=l

(74)

(75)

where

{

lif V#Oandrg5r~

{

1 ~ ri~ = ma: rijpi = Vik =
O otherwise ‘ O otherwise

and 7i0 is the distance on which the non-Lipschitz  potential can be ignored in comparison to

the potential field V.

Eqs. (74) and (75) can be written down in the following compressed form:

Nx abq, =0, k=l,2,... N’ (76)
*=1
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where g, are generalized velocities ix, yX, ix, @X ~, b, and ah are the functions of the

corresponding generalized coordinates, and N’ is the number of constraints.

Now the governing equations for the system of N interacting particles can be

presented by the Lagrange equations:

d dL dL “———— ~A
dt dq~ dq,  = ,.,

~ 6’k~, .v=l,2,... n (77)

Here L=W-V is the Lagrangian, and a~ are the Lagrangian multipliers representing

rections  of the non-holonomic (khematical)  constraints (72) and (73).

13qs.  (76) and (77) form a coupled

equations with respect to N + N’ variables.

nonlinear system of N + N‘ differential

The basic properties of this system will be outlined below.

Firstly, on atomic scale, the system is not Hamiltonian (because of the non-

holonomous  constraints (76)); however, since Eqs. (77) are homogeneous, the total energy

is still preserved:

W+V = H = Const

Secondly, on atomic scale, the description of motion is non-local. Indeed, the
reactions of constraints A~ which describe forces and torques cannot be found from any

local constitutive  equations; instead, the whole global picture of the motion is needed to

find them.

Thirdly, on atomic scale, the system possesses the same qualitative properties

(quantization of energy, non-Lipschitz  instability and randomness) as those described for

Eq. (23).

Forthly,  the system has singularities at the points of contact where accelerations and

reactive forces become unbounded. In order to avoid that, one can turn to the impulse-
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momentum version of the Lagrange equations [7]. since both impules and momenta are

bounded (see Eqs. (23) and (24)).

Fifthly,  as follows from Eqs (71 ), the kinematical constraints have a long memory:

spins of any two particles being in contact ones will be correlated “forever,” and that

describes the effect known as the Einstein-Podolsky-Rosen paradox.

It should be stressed that, generally speaking, Eqs. (76), (77) can be studied

independently on the corresponding Schrodinger  equation in the same way in which the

dynamical equations simulating random walk can be studied directly without the

corresponding Fokker-Planck  equation, In this connection, we cannot exclude a possibility

that investigation of quantum systems directly by Eqs. (76),(77) may lead to new, more

subtle effects which could not be capturd  by the Schrodinger  equation. In order to

illustrate that, we will make some additional comments to these equations,

A solution to Eqs. (77) defines a two-parametric family of trajectories and spins of

the particles, respectively:

r = r(ro, vo, t,n, m , () !co=co rocoo,  t,n,rn ) (78)

ro, =r(t= O), V. =r(t= O), 00 =o(t=O)

which depend upon discrete values of n and m via the parameters /l and y (see Eqs. (22),

(68), (72) and (73)).

We will now show that ~ and y can be interpreted as random variables. Indeed,

as pointed out in Section 6, for a given i from the domain (58), the corresponding /3
velocities can take any values from U(IO ) to U(O)  as a result of the non-Lipschitz  instability

described by Eq. (57), and that makes the velocities random. But for a fixed i, different

velocities mean different ~ (see Eq. (23), i.e., ~ can actually take all the values of the

form (22) in the interval (38). However, not all of these values of ~ are equally probable.

Indeed, consider a state ~ = O which is defined with an error Ai <1. then, according to

Eq. (36):
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>

i.e., the minimum error fi~i.

(79)

is bounded by the condition that O < ~ < ~.

If one assumes that all the errors Ai- are equally probable, then the probability

distribution for ~ can be obtained from E~. (79):

(80)

Considering /3 and y as random variables with the distributions (80), one can find

from the solution (78) the probability p* that a selected particle r; at a fixed time t* is

located at the point r*. In terms of the Schrodinger  equation, this probability is equal to

the square of the modules of the wave function. (At this stage, the wave function itself

does not appear at all).

In addition to that, one

fixed time t** is located at the

from the Schrodinger  equation.

can find a probability P** that a selected particle r; at a

point r * having the spin @*, and that cannot be found

In some particular cases, the probabilities p* and p** can be time-independent. In

order to enforce this condition, one has to restrict the free choice of the parameters n and m

in such a way that only” certain values of them are allowed. These values will define the

discrete stationary levels of energy of the system.

It is worth mentioning that since Eqs. (77) are nonlinear, the proposed model

reinforces the link between quantum mechanics and nonlinear phenomena discussed in [8].

It should be emphasized that the non-Lipschitz  fom~alism of Newton laws is not

only unified classical and quantum mechanics, but it also eliminates some “infinity-
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paradoxes” in quantum theory. In order to illustrate this, consider spherical waves as a

solution to the Maxwell equation with respect to the electric potential w [9]:

?(rq).$:(rq)=o
dr’

i.e.,

p(r,t)=~f(ct  * r)

One immediately faces the point-charge problem with the inward wave:

p(r, t)+~ at r+O

unless the solution (82) is cut off at a small value

r=ro, rol! <<l

(81)

(82)

(83)

(84)

where ~ represent the classical (non-quantum) length scale.

However, the condition (84) does not represent a non-point charge: the solution

(82) “does not know” about this charge and goes through it to infinity.

A way out of this situation is very simple if one relaxes the Lipschitz condition at
r=ro. Indeed, consider a solution to Eq. (81) subject to the following boundary conditions:

d(pfP(ro J)= 0, --j--(ro,t)+

(compare with the conditions (4) and (5)).

(85)

It can be presented as
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f (et* r) 2m–1
p(r,t) =

( )

*., > X<l> l–x==
rl–~

r

(86)

n,m= 1,2,... etc. m < n (87)

Indeed, in the cIassicaJ scale (r -1’>> rO) it coincides with the solution (82), and

for r = r, it satisfies the boundary conditions (85). On the quantum scale (r= r,) Eq. (86)

has the quantum properties similar to those of Eq. (27).

Thus, it turns out that the micro-world is not as mysterious as it seems on the first

sight: after all, it is still based upon the Newton’s laws.
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